| Semester- I                               |                |                    |  |  |
|-------------------------------------------|----------------|--------------------|--|--|
| Paper - II                                |                |                    |  |  |
| Course Type: Core Credit                  |                | Course Code: CS102 |  |  |
| Course Title: Database Management Systems |                |                    |  |  |
| Teaching Scheme                           | No. of Credits | Examination Scheme |  |  |
| 02 Hours / Week                           | 2              | IE: 15 Marks       |  |  |
|                                           |                | UE: 35 Marks       |  |  |

### **Prerequisites**

• Basic Knowledge of file system, storing data in file system and Operations on sets

### **Course Objectives**

- To understand the fundamental concepts of database.
- To understand user requirements and frame it in data model.
- To understand creations, manipulation and querying of data in databases.

#### **Course Outcomes**

On completion of the course, student will be able to-

- Solve real world problems using appropriate set, function, and relational models.
- Design E-R Model for given requirements and convert the same into database tables.
- Use SQL.

### **Course Contents**

|           | <b>T</b>             | •       |
|-----------|----------------------|---------|
| Chapter 1 | Introduction to DBMS | 3 Hours |

- 1.1. Introduction
- 1.2. File system Vs DBMS
- 1.3. Levels of abstraction & data independence
- 1.4.Structure of DBMS (Roles of DBMS Users)
- 1.5. Users of DBMS Advantages of DBMS

### **Chapter 2** | Conceptual Design

11 Hours

- 2.1. Overview of DB design process
- 2.2. Introduction to data models (E-R model, Relational model, Network model, Hierarchical model)
- 2.3. Conceptual design using ER data model (entities, attributes, entity sets, relations, relationship sets)
- 2.4. Constraints (Key constraints, Integrity constraints, referential integrity, unique constraint, Null/Not Null constraint, Domain, Check constraint, Mapping constraints)
- 2.5. Extended features Specialization, Aggregation, Generalization
- 2.6. Pictorial representation of ER(symbols)
- 2.7. Structure of Relational Databases (concepts of a table)
- 2.8. DBMS Versus RDBMS
- 2.9. Case Studies on ER model

Chapter 3 SQL 9 Hours

- 3.1. Introduction to query languages
- 3.2. Basic structure
- 3.3. DDL Commands
- 3.4. DML Commands
- 3.5. Forms of a basic SQL query (Expression and strings in SQL)
- 3.6. Set operations
- 3.7. Aggregate Operators and functions
- 3.8. Date and String functions
- 3.9. Null values
- 3.10. Nested Subqueries
- 3.11 SQL mechanisms for joining relations (inner joins, outer joins and their types)
- 3.12 Views
- 3.13. Examples on SQL (case studies)

### **Chapter 4** Relational Database Design

7 Hours

- 3.1. Introduction to Relational-Database Design (undesirable properties of a RDB design)
- 3.2. Functional Dependency(Basic concepts, F+, Closure of an Attribute set, Armstrong's axioms)
- 3.3. Concept of Decomposition
- 3.4. Desirable Properties of Decomposition (Lossless join, Lossy join, Dependency Preservation)
- 3.5. Concept of normalization, Normal Forms (1NF,2NF and 3NF), Examples
- 3.6 Keys Concept with Examples : Candidate Keys and Super Keys, Algorithm to find the super keys / primary key for a relation

#### **Reference Books:**

- 1. Database System Concepts, Henry F. Korth, Abraham Silberschatz, S.Sudarshan, ISBN:9780071289597, Tata McGraw-Hill Education
- 2. Database Management Systems ,RaghuRamakrishnan,ISBN:9780071254342,Mcgraw-hill higher Education
- 3. Database Management Systems, Raghu Ramakrishnan and Johannes Gehrke,McGraw-Hill Science/Engineering/Math; 3 edition, ISBN: 9780072465631
- 4. Database Systems, Shamkant B. Navathe, RamezElmasri,ISBN:9780132144988,PEARSON HIGHER EDUCATION
- 5. Beginning Databases with PostgreSQL: From Novice to Professional, Richard Stones, Neil Matthew, ISBN:9781590594780, Apress
- 6. PostgreSQL, Korry Douglas, ISBN:9780672327568, Sams
- 7. Practical PostgreSQL (B/CD), John Worsley, Joshua Drake, ISBN: 9788173663925 Shroff/O'reilly
- 8. Practical Postgresql, By Joshua D. Drake, John C Worsley (O'Reillypublications)
- 9. "An introduction to Database systems", Bipin C Desai, Galgotia Publications

## Semester- II Paper - II

## Course Type: Core Credit Course Code: CS202

**Course Title: Relational Database Management Systems** 

| Teaching Scheme | No. of Credits | Examination Scheme |
|-----------------|----------------|--------------------|
| 2 Hours / Week  | 2              | IE : 15 Marks      |
|                 |                | UE: 35 Marks       |

### **Prerequisites**

- Basic Knowledge of DBMS
- Knowledge of SQL Queries
- Basics of relational design
- Basics of ER model

### **Course Objectives**

- To teach fundamental concepts of RDBMS (PL/PgSQL)
- To teach database management operations
- Be familiar with the basic issues of transaction processing and concurrency control
- To teach data security and its importance

#### **Course Outcomes**

On completion of the course, student will be able to—

- Design E-R Model for given requirements and convert the same into database tables.
- Use database techniques such as SQL & PL/SQL.
- Explain transaction Management in relational database System.
- Use advanced database Programming concepts

#### **Course Contents**

# Chapter 1 Relational Database Design Using PLSQL 8 Hours

- 1.1 Introduction to PLSQL
- 1.2 PL/PgSqL: Datatypes, Language structure
- 1.3 Controlling the program flow, conditional statements, loops
- 1.4 Stored Procedures
- 1.5 Stored Functions
- 1.6 Handling Errors and Exceptions
- 1.7 Cursors
- 1.8 Triggers

## Chapter 2 Transaction Concepts and concurrency control

10 hours

- 2.1 Describe a transaction, properties of transaction, state of the transaction.
- 2.2 Executing transactions concurrently associated problem in concurrent execution.
- 2.3 Schedules, types of schedules, concept of Serializability, Precedence graph for Serializability.
- 2.4 Ensuring Serializability by locks, different lock modes, 2PL and its variations.
- 2.5 Basic timestamp method for concurrency, Thomas Write Rule.
- 2.6 Locks with multiple granularity, dynamic database concurrency (Phantom Problem).
- 2.7 Timestamps versus locking.
- 2.8 Deadlock and deadlock handling Deadlock Avoidance( wait-die, wound-wait), Deadlock Detection and Recovery (Wait for graph).

### **Chapter 3** Database Integrity and Security Concepts

6 Hours

- 3.1 Domain constraints
- 3.2 Referential Integrity
- 3.3 Introduction to database security concepts
- 3.4 Methods for database security
  - 3.4.1Discretionary access control method
  - 3.4.2Mandatory access control
  - 3.4.3. Role base access control for multilevel security.
- 3.5 Use of views in security enforcement.
- 3.6 Overview of encryption technique for security.
- 3.7 Statistical database security.

# Chapter 4 Crash Recovery

4 Hours

- 4.1 Failure classification
- 4.2 Recovery concepts
- 4.3 Log base recovery techniques (Deferred and Immediate update)
- 4.4 Checkpoints, Relationship between database manager and buffer cache. Aries recovery algorithm.
- 4.5 Recovery with concurrent transactions (Rollback, checkpoints, commit)
- 4.6 Database backup and recovery from catastrophic failure

### Chapter 5 Other Databases

2 Hours

- 5.1 Introduction to Parallel and distributed Databases
- 5.2 Introduction to Object Based Databases
- 5.3 XML Databases
- 5.4 NoSQL Database
- 5.5 Multimedia Databases
- 5.6 Big Data Databases

#### **Reference Books:**

- 1. Database System Concepts, By Silberschatz A., Korth H., Sudarshan S., 6<sup>th</sup> Edition, McGraw Hill Education
- 2. Database Management Systems, Raghu Ramakrishnan, Mcgraw-Hill Education
- 3. Database Systems, Shamkant B. Navathe, Ramez Elmasri, PEARSON HIGHER EDUCATION
- 4. Fundamentals of Database Systems, By: Elmasri and Navathe, 4<sup>th</sup> Edition Practical PostgreSQL O'REILLY
- 5. Database Management Systems,RaghuRamakrishnan and JohannesGehrke,McGraw-Hill Science/Engineering/Math; 3 edition, ISBN: 9780072465631
- 6. NoSQL Distilled, Pramod J. Sadalage and Martin Fowler, Addison Wesley
- 7. An Introduction to Database Systems", C J Date, Addison-Wesley
- 8. Database Systems: Concepts, Design and Application", S.K.Singh, Pearson, Education
- 9. NoSQL Distilled A Brief Guide to the Emerging World of Polyglot Persistence : by Pramod J. Sadalage, Martin Fowler, Addison-Wesley, Pearson Education, Inc.
- 10. MongoDB: The Definitive Guide, Kristina Chodorow, Michael Dirolf, O'Reilly Publications